Volume 4, Issue 2, December 2020, Page: 39-46
Synthesis, Characterization and Reactivity of Nitrosyl Ruthenium Complexes with the Non-stereoidal Anti-inflammatory Diflunisal
Ernani Lacerda de Oliveira Neto, Department of Exact and Natural Sciences, State University of Southwest Bahia, Itapetinga, Brazil; Department of General and Inorganic Chemistry, Federal University of Bahia, Salvador, Brazil
Juliana Guerreiro Cezar, Department of General and Inorganic Chemistry, Federal University of Bahia, Salvador, Brazil
Fabio Gorzoni Doro, Department of Chemistry, Federal University of Mining Triangle, Iturama, Brazil
Jose Roque Mota Carvalho, Department of General and Inorganic Chemistry, Federal University of Bahia, Salvador, Brazil
Kleber Queiroz Ferreira, Department of General and Inorganic Chemistry, Federal University of Bahia, Salvador, Brazil
Received: Aug. 29, 2019;       Accepted: Sep. 2, 2019;       Published: Jun. 9, 2020
DOI: 10.11648/j.jcebe.20200402.12      View  210      Downloads  90
Abstract
The Na2[Ru(NO)Cl3 (df)] (I) and cis-[Ru(NO)(df)(cyclen)]Cl2 (II) complexes (df=diflunisal (5-(2,4-difluorophenyl)-2-hydroxybenzoic acid, cyclen=1, 4, 7, 10-tetraazacyclododecane) have been synthesized and characterized by elemental analysis, electronic (UV-Vis) and vibrational (FTIR) spectroscopic techniques. FTIR data suggests different modes of coordination of the ligand diflunisal in these complexes, i.e., coordinated in the bidentate form in the compound I and in the monodentate form in the compound II, and that df is coordinated to ruthenium by carboxylate group in a monodentate mode for both complexes. The FTIR spectra also display v(NO) at 1880 cm-1 and 1892 cm-1 for I and II, respectively, indicating a nitrosonium (NO+) character. Electronic spectra suggest that df is coordinated to the metal center in both complexes in catecholate form. Detailed electrochemical studies showed that complexes I and II display {RuNO}6/7 process at -420 mV and at -400 mV (vs. Ag/AgCl) respectively, and df ligand is oxidized at 1120 mV and at 770 mV, respectively. Controlled potential electrolysis at -750 mV or chemical reduction with Zn(Hg) amalgam results in NO release from both complexes.
Keywords
Nitrosyl Ruthenium Complex, Nitric Oxide, Diflunisal
To cite this article
Ernani Lacerda de Oliveira Neto, Juliana Guerreiro Cezar, Fabio Gorzoni Doro, Jose Roque Mota Carvalho, Kleber Queiroz Ferreira, Synthesis, Characterization and Reactivity of Nitrosyl Ruthenium Complexes with the Non-stereoidal Anti-inflammatory Diflunisal, Journal of Chemical, Environmental and Biological Engineering. Vol. 4, No. 2, 2020, pp. 39-46. doi: 10.11648/j.jcebe.20200402.12
Copyright
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
L. J. Ignarro, Academic Press, Los Angeles, 2000.
[2]
M. J. Rose, P. K. Mascharak, Coord. Chem. Rev. 252 (2008) 2093-2114.
[3]
D. A. Wink, J. B. Mitchell, Free Radical Biology and Medicine. 25 (1998) 434-456.
[4]
P. L. Feldman, O. W. Griffith, C&N. 20 (1993) 26-33.
[5]
R. M. Clancy, S. B. Abramson, Proc Soc Exp Biol Med. 210, 2 (1995) 93-101.
[6]
E. Tfouni, D. R. Truzzi, A. Tavares, A. J. Gomes, L. E. Figueiredo, D. W. Franco, Nitric Oxide 26 (2012) 38-53.
[7]
F. G. Marcondes, A. A. Ferro, A. Souza-torsoni, M. Sumitani, M. J. Clarck, D. W. Franco, E. Franco, M. H. Krieger, Life Sciences 70 (2002) 2735-2752.
[8]
G. B. Ritcher-Addo, P. Legzdins, Oxford University Press, 1992.
[9]
K. Q. Ferreira, F. G. Santos, Z. N. Rocha, T. Guaratini, R. S. Silva, E. Tfouni, Inorg. Chem. Comm. 7 (2004) 204-208.
[10]
E. Tfouni, K. Q. Ferreira, F. G. Doro, R. S. Silva, Z. N. Rocha, Coord. Chem. Rev. 249 (2005) 405-418.
[11]
F. S. Oliveira, V. Togniolo, T. Pupo, A. C. Tedesco; R. S. Silva, Inorg. Chem. Comm. 7 (2004) 160-164.
[12]
F. G. Doro, K. Q. Ferreira, Z. N. da Rocha, G. F. Caramori, A. J. Gomes, E. Tfouni. Coord. Chem. Rev. 306 (2016) 652-677.
[13]
D. Bonaventura, C. N. Lunardi, G. J. Rodrigues, M. A. Neto, J. A. Vercesi, R. G. De Lima, R. S. Da Silva, L. M. Bendhack, J. Inorg. Biochem. 103 (2009) 1366-1374.
[14]
R. G. Lima, M. G. Sauaia, D. Bonaventura, A. C. Tedesco, L. M. Bendhack. R. S. Da Silva, Inorg. Chim. Acta 359 (2006) 2543-2549.
[15]
C. S. Freitas, A. C. Roveda, Jr., D. R. Truzzi, A. C. Garcia, T. M. Cunha, F. Q. Cunha, D. W. Franco, J. Med. Chem. 11, 58 (2015) 4439-4448.
[16]
C. L. Kummer, T. C. Coelho, Rev. Bras. Anestesiol. 52 (2002) 498-512.
[17]
F. Sayin, S. Kir, J. Pharm. Biomed. Anal. 25, 1 (2001) 153-163.
[18]
S. Fountoulaki, F. Perdih, I. Turel, D. P. Kessissoglou, G. Psomas, J. Inorg. Biochem. 105, 12 (2011) 1645-1655.
[19]
P. C. Andrews, R. L. Ferrero, P. C. Junk, I. Humar, Q. Luu, K. Nguyen, J. W. Taylor, J. Chem. Soc., Dalton Trans. 39 (2010) 2861-2868.
[20]
A. Tarushi, C. Kakoulidou, C. P. Raptopoulou, V. Psycharis, D. P. Kessissoglou, I. Zoi, A. N. Papapoulos, G. Psomas, J. Inorg. Biochem. 170 (2017) 85-97.
[21]
F. G. Doro, E. E. Castellano, L. A. B. Moraes, M. N. Eberlin, E. Tfouni, Inorg. Chem. 47, 10 (2008) 4118-4125.
[22]
V. A. Emel’yanov, I. A. Baidina, S. A. Gromilov, J. Sctruc. Chem. 53, 2 (2012) 341-346.
[23]
K. Q. Ferreira, L. N. Cardoso, S. Nikolaou, Z. N. Rocha, R. S. Silva, E. Tfouni, Inorg. Chem. 44 (2005) 5544-5546.
[24]
K. Q. Ferreira, A. M. Lucchesi, Z. N. Rocha, R. S. Silva, Inorg. Chim. Acta. 328 (2002) 147-151.
[25]
C. M. Che, C. K. Poon, Pure and Applied Chemistry 60 (1998) 495-500.
[26]
D. D. Walker, H. Taube, Inorg. Chem. 20 (1981) 2828-2834.
[27]
F. D. Oliveira, K. Q. Ferreira, D. Bonaventura, L. M. Bendhack, A. C. Tedesco, S. D. Machado, E. Tfouni, R. S. Silva, J. Inorg. Biochem. 101, 320 (2007) 313-320.
[28]
I. P. Evans, A. Spenar, G. J. Wilkinson, J. Chem. Soc., Dalton Trans. (1973) 204.
[29]
E. Tfouni, D. W. Franco, B. R. McGarvey, M. Krieger, Coord. Chem. Rev. 236, (2003) 57-69.
[30]
L. A. Berben, M. C. Faia, N. R. M. Crawford, J. R. Long, Inorg. Chem. 45 (2006) 6378-6386.
[31]
F. Roncaroli, M. E. Ruggiero, D. W. Franco, G. L. Estiu, J. A. Olabe, Inorg. Chem. 41 (2002) 5760-5769.
[32]
G. Bandoli, A. Dolmella, T. I. A. Gerber, J. G. H. Du Preez, Inorg. Chim. Acta 294 (1999) 114-118.
[33]
A. Trinchero, S. Bonora, A. Tinti, G. Fini, Biopolymers, 74 (2004) 120-124.
[34]
G. B. Deacon, R. J. Phillips. Coord. Chem. Rev. 33 (1980) 227-250.
[35]
J. H. Enemark, R. D. Felthmam, Coord. Chem. Rev. 13 (1974) 339-406.
[36]
P. C. Ford, I. M. Lorkovic, Chem. Rev. 102 (2002) 993-1017.
[37]
C. G. Pierpont, R. M. Buchanan, Coord. Chem. Rev. 38 (1981) 45-87.
[38]
D. Nematollahi, A. Amani, Chem. Pharm. Bull. 56 (2008) 513-517.
[39]
R. A. Metcalfe, A. B. P. Lever, Inorg. Chem. 36 (1997) 4762-4771.
[40]
V. Poelhsitz, D. Sc. Thesis, Centro de Ciências Exatas e de Tecnologia, UFSCar, 2005.
[41]
J. C. Toledo, L. G. F. Lopes, A. A. Alves, L. P. Silva, D. W. Franco, J. Inorg. Biochem. 89 (2002) 267–271.
[42]
P. G. Zanichelli, H. F. G. Estrela, R. C. Spadari-Bratfisch, D. M. Grassi-Kassisse, D. W. Franco, Nitric Oxide, 16 (2007) 189-196.
[43]
F. O. N. Silva, S. X. B. Araújo, A. K. M. Holanda, E. Meyer, F. A. M. Sales, I. C. N. Diógenes, I. M. M. Carvalho, I. S. Moreira, L. G. F. Lopes, Eur. J. Inorg. Chem. 10 (2006) 2020-2026.
[44]
L. G. F. Lopes, A. Wieraszko, Y. El-Sherif, M. J. Clarke, Inorg. Chim. Acta, 312 (2001) 15-22.
[45]
K. Q. Ferreira, E. Tfouni, J. Braz. Chem. Soc. 21 (2010) 1349-1358.
[46]
R. S. Silva, S. I. Gorelsky, E. S. Dodsworth, E. Tfouni, A. B. P. Lever, Dalton Trans. 22 (2000) 4078-4088.
Browse journals by subject